go to  ForumEasy.com   
JavaPro  
 
 
   Home  |  MyForum  |  FAQ  |  Archive    You are not logged in. [Login] or [Register]  
Forum Home » Algorithmic Trading » Quantopian -- The basics
Email To Friend  |   Set Alert To This Topic Rewarding Points Availabe: 0 (What's this) New Topic  |   Post Reply
Author Topic: Quantopian -- The basics
WebSpider
member
offline   
 
posts: 147
joined: 06/29/2006
from: Seattle, WA
  posted on: 04/29/2019 10:45:33 PM    Edit  |   Quote  |   Report 
Quantopian -- The basics
The Algorithm Bare Bone:

# Import Algorithm API
import quantopian.algorithm as algo


def initialize(context):
    # Initialize algorithm parameters
    context.minute_count = 0
    context.day_count = 0
    context.minutely_message = "Minute {}."
    context.daily_message = "Day {}."
    context.weekly_message = "Time to place some trades!"

    # Schedule rebalance function
    algo.schedule_function(
        rebalance,
        date_rule=algo.date_rules.week_start(),
        time_rule=algo.time_rules.market_open()
    )

def handle_data(context, data):
    context.minute_count += 1
    if context.minute_count%60 == 0:
        log.info(context.minutely_message, context.minute_count)
    
def before_trading_start(context, data):
    # Execute any daily actions that need to happen
    # before the start of a trading session
    context.day_count += 1
    log.info(context.daily_message, context.day_count)


def rebalance(context, data):
    # Execute rebalance logic
    log.info(context.weekly_message)    


The output:
2019-01-02 05:45 before_trading_start:29 INFO Day 1.
2019-01-02 07:30 handle_data:23 INFO Minute 60.
2019-01-02 08:30 handle_data:23 INFO Minute 120.
2019-01-02 09:30 handle_data:23 INFO Minute 180.
2019-01-02 10:30 handle_data:23 INFO Minute 240.
2019-01-02 11:30 handle_data:23 INFO Minute 300.
2019-01-02 12:30 handle_data:23 INFO Minute 360.
2019-01-03 05:45 before_trading_start:29 INFO Day 2.
2019-01-03 07:00 handle_data:23 INFO Minute 420.
2019-01-03 08:00 handle_data:23 INFO Minute 480.
2019-01-03 09:00 handle_data:23 INFO Minute 540.
2019-01-03 10:00 handle_data:23 INFO Minute 600.
2019-01-03 11:00 handle_data:23 INFO Minute 660.
2019-01-03 12:00 handle_data:23 INFO Minute 720.
2019-01-03 13:00 handle_data:23 INFO Minute 780.
2019-01-04 05:45 before_trading_start:29 INFO Day 3.
2019-01-04 07:30 handle_data:23 INFO Minute 840.
2019-01-04 08:30 handle_data:23 INFO Minute 900.
2019-01-04 09:30 handle_data:23 INFO Minute 960.
2019-01-04 10:30 handle_data:23 INFO Minute 1020.
2019-01-04 11:30 handle_data:23 INFO Minute 1080.
2019-01-04 12:30 handle_data:23 INFO Minute 1140.
2019-01-07 05:45 before_trading_start:29 INFO Day 4.
2019-01-07 06:31 rebalance:34 INFO Time to place some trades!
2019-01-07 07:00 handle_data:23 INFO Minute 1200.
2019-01-07 08:00 handle_data:23 INFO Minute 1260.
2019-01-07 09:00 handle_data:23 INFO Minute 1320.
2019-01-07 10:00 handle_data:23 INFO Minute 1380.
2019-01-07 11:00 handle_data:23 INFO Minute 1440.
2019-01-07 12:00 handle_data:23 INFO Minute 1500.
2019-01-07 13:00 handle_data:23 INFO Minute 1560.
2019-01-08 05:45 before_trading_start:29 INFO Day 5.
2019-01-08 07:30 handle_data:23 INFO Minute 1620.
2019-01-08 08:30 handle_data:23 INFO Minute 1680.
2019-01-08 09:30 handle_data:23 INFO Minute 1740.
2019-01-08 10:30 handle_data:23 INFO Minute 1800.
2019-01-08 11:30 handle_data:23 INFO Minute 1860.
2019-01-08 12:30 handle_data:23 INFO Minute 1920.
2019-01-09 05:45 before_trading_start:29 INFO Day 6.
2019-01-09 07:00 handle_data:23 INFO Minute 1980.
2019-01-09 08:00 handle_data:23 INFO Minute 2040.
2019-01-09 09:00 handle_data:23 INFO Minute 2100.
2019-01-09 10:00 handle_data:23 INFO Minute 2160.
2019-01-09 11:00 handle_data:23 INFO Minute 2220.
2019-01-09 12:00 handle_data:23 INFO Minute 2280.
2019-01-09 13:00 handle_data:23 INFO Minute 2340.
2019-01-10 05:45 before_trading_start:29 INFO Day 7.
2019-01-10 07:30 handle_data:23 INFO Minute 2400.
2019-01-10 08:30 handle_data:23 INFO Minute 2460.
2019-01-10 09:30 handle_data:23 INFO Minute 2520.
2019-01-10 10:30 handle_data:23 INFO Minute 2580.
2019-01-10 11:30 handle_data:23 INFO Minute 2640.
2019-01-10 12:30 handle_data:23 INFO Minute 2700.
2019-01-11 05:45 before_trading_start:29 INFO Day 8.
2019-01-11 07:00 handle_data:23 INFO Minute 2760.
2019-01-11 08:00 handle_data:23 INFO Minute 2820.
2019-01-11 09:00 handle_data:23 INFO Minute 2880.
2019-01-11 10:00 handle_data:23 INFO Minute 2940.
2019-01-11 11:00 handle_data:23 INFO Minute 3000.
2019-01-11 12:00 handle_data:23 INFO Minute 3060.
2019-01-11 13:00 handle_data:23 INFO Minute 3120.
2019-01-14 05:45 before_trading_start:29 INFO Day 9.
2019-01-14 06:31 rebalance:34 INFO Time to place some trades!


What's going on here?
  • Function handle_data(context, data) (-- optional) has been triggered by system every minute;
  • Function before_trading_start(context, data) has been triggered by system (45 minutes) before trading start;
  • Function rebalance(context, data) has been triggered by Scheduler by its own specific rules.

  •  Profile | Reply Points Earned: 0
    WebSpider
    member
    offline   
     
    posts: 147
    joined: 06/29/2006
    from: Seattle, WA
      posted on: 05/02/2019 12:28:10 AM    Edit  |   Quote  |   Report 
    The Basic Objects and Functions
    Object context:

    context is a Python dictionary used for maintaining state by attaching any property:
        context.some_property = some_value
    



    Object assets:

    assets is a Asset or a list of Assets which represents security.

    Find security asset by name:
          assets = symbol('AAPL')
          assets = [symbol('AAPL'), symbol('MSFT')]
          assets = symbols('AAPL', 'MSFT')
    


    Find security asset by id:
          # AAPL
          assets = sid(24)  
          # AAPL, MSFT, and SPY
          assets = [sid(24), sid(5061), sid(8554)]  
    


     Profile | Reply Points Earned: 0
    WebSpider
    member
    offline   
     
    posts: 147
    joined: 06/29/2006
    from: Seattle, WA
      posted on: 05/02/2019 10:24:53 PM    Edit  |   Quote  |   Report 
    Object Data
    data.current(assets, fields)

    This method returns the current value of the given assets for the given fields at the current algorithm time.

    Parameter fields:
  • 'price' -- returns the last known close price, NaN if not founded
  • 'last_traded' -- returns the date of the last trade event
  • 'open' -- return the relevant information for the current trade bar
  • 'high' -- return the relevant information for the current trade bar
  • 'low' -- return the relevant information for the current trade bar
  • 'close' -- return the relevant information for the current trade bar
  • 'volume' -- returns the trade volume, 0 if there is no trade this minute
  • 'contract' -- returns the current active contract

    Example:
            price = data.current(symbol('AAPL'), 'price');
    



    data.history(assets, fields, bar_count, frequency)
    This method returns a window of data for the given assets and fields.

    Parameter fields:
  • 'price' -- returns the last known close price, NaN if not founded
  • 'open' -- return the relevant information for the current trade bar
  • 'high' -- return the relevant information for the current trade bar
  • 'low' -- return the relevant information for the current trade bar
  • 'close' -- return the relevant information for the current trade bar
  • 'volume' -- returns the trade volume, 0 if there is no trade this minute

    Parameter frequency:
  • '1m' -- for minutely data
  • '1d' -- for daily data

    Examples (DAILY):
        # returns the current price
        price_history = data.history(assets, "price", 1, "1d"); 
    
        # returns yesterday's close price and the current price
        price_history = data.history(assets, "price", 2, "1d");
    
        # returns the prices for the previous 5 days and the current price
        price_history = data.history(assets, "price", 6, "1d");
    
        # returns the volume since the current day's open, even if it is partial
        price_history = data.history(assets, "volume", 1, "1d"); 
    


    Examples (MINUTELY):
        # returns the current price
        price_history = data.history(assets, "price", 1, "1m"); 
    
        # returns the previous minute's close price and the current price
        price_history = data.history(assets, "price", 2, "1m"); 
    
        # returns the prices for the previous 5 minutes and the current price
        price_history = data.history(assets, "price", 6, "1m");
    
        # returns the volume for the previous 60 minutes
        price = data.history(assets, "volume", 60, "1m");
    


    Example -- Up or down compared to previouse day's close price?
    def initialize(context):
        # AAPL, MSFT, and SPY
        context.securities = [sid(24), sid(5061), sid(8554)]
    
    def handle_data(context, data):
        price_history = data.history(context.securities, fields="price", bar_count=2, frequency="1d")
        for s in context.securities:
            prev_close = price_history[s][-2];
            curr_price = price_history[s][-1];
            if curr_price > prev_close:
                print(s, prev_close, curr_price, ' --> UP');
            else:
                print(s, prev_close, curr_price, ' --> DOWN');
    


    Example -- VWAP (Volume Weighted Average Price)
    def initialize(context):
        # AAPL, MSFT, and SPY
        context.securities = [sid(24), sid(5061), sid(8554)]
    
    def vwap(prices, volumes):
        return (prices * volumes).sum() / volumes.sum()
    
    
    def handle_data(context, data):
        hist = data.history(context.securities, fields=["price", "volume"], bar_count=30, frequency="1d")
    
        vwap_10 = vwap(hist["price"][-10:], hist["volume"][-10:])
        vwap_30 = vwap(hist["price"], hist["volume"])
    
        for s in context.securities:
            if vwap_10[s] > vwap_30[s] :
                order(s, 100)
            elif vwap_10[s] < vwap_30[s] :
                order(s, -10)
    


    Other data's methods:
  • data.can_trade(assets) -- For the given asset or iterable of assets, returns true if the security has a known last price
  • data.is_stale(assets) -- For the given asset or iterable of assets, returns true if the asset has ever traded and there is no trade data for the current simulation time
  •  Profile | Reply Points Earned: 0
    WebSpider
    member
    offline   
     
    posts: 147
    joined: 06/29/2006
    from: Seattle, WA
      posted on: 05/02/2019 11:24:39 PM    Edit  |   Quote  |   Report 
    Ordering Methods
    order_optimal_portfolio(objective, constraints)
    This method places one or more orders by calculating a new optimal portfolio based on the objective and constraints.

    order(asset, amount, style=OrderType)
    This methods places an order for the specified asset and the specified amount of shares (equities) or contracts (futures).

    Parameter OrderType:
  • style=MarketOrder(exchange)
  • style=StopOrder(stop_price, exchange)
  • style=LimitOrder(limit_price, exchange)
  • style=StopLimitOrder(limit_price=price1, stop_price=price2, exchange)

    order_value(asset, amount, style=OrderType)
    Place an order by desired value rather than desired number of shares or contracts.

    order_percent(asset, amount, style=OrderType)
    Places an order in the specified asset corresponding to the given percent of the current portfolio value, which is the sum of the positions value and ending cash balance. Placing a negative percent order will result in selling the given percent of the current portfolio value. Orders are always truncated to whole shares or contracts. Percent must be expressed as a decimal (0.50 means 50%).

    Example
    order_percent(symbol('AAPL'), .5) will order AAPL shares worth 50% of current portfolio value. If AAPL is $100/share and the portfolio value is $2000, this buys 10 shares (discarding slippage and transaction cost).

    order_target(asset, amount, style=OrderType)
    Places an order to maintain the target number of shares in portfolio. Placing a negative target order will result in a short position equal to the negative number specified.

    Example
    If the current portfolio has 5 shares of AAPL and the target is 20 shares, order_target(symbol('AAPL'), 20) orders 15 more shares of AAPL.

    order_target_value(asset, amount, style=OrderType)
    Places an order to adjust a position to a target value. Placing a negative target order will result in a short position equal to the negative target value.

    Example
    If the current portfolio holds $500 worth of AAPL and the target is $2000, order_target_value(symbol('AAPL'), 2000) orders $1500 worth of AAPL (rounded down to the nearest share).

    cancel_order(order)
    Attempts to cancel the specified order.

    Parameters
    order: Can be the order_id as a string or the order object.


    get_open_orders(sid)
    If asset is None or not specified, returns all open orders. If asset is specified, returns open orders for that asset

    Parameters
    sid: An Equity object or a Future object. Can also be None.

    Returns
    If asset is unspecified or None, returns a dictionary keyed by asset ID. The dictionary contains a list of orders for each ID, oldest first. If an asset is specified, returns a list of open orders for that asset, oldest first.

    get_order(order)
    Returns the specified order. The order object is discarded at the end of handle_data.

    Parameters
    order: Can be the order_id as a string or the order object.

    Returns
    An order object that is read/writeable but is discarded at the end of handle_data.

  •  Profile | Reply Points Earned: 0

     
    Powered by ForumEasy © 2003-2005, All Rights Reserved. | Privacy Policy | Terms of Use
     
    Get your own forum today. It's easy and free.